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A. RESEARCH OBJECTIVES

I. Wavelet Transforms and Edge Detection

Approaches for integrating multiscale edge information using wavelet

transforms shall be developed and these include the following endeavors:

a. Development of wavelet transforms for accurate edge detection.

b. Study of characteristic behaviors of edges in the wavelet

representation.

c. Study of the connection between the regularization approach and the

wavelet approach for edge detection, and development of a new wavelet

transform using the derived connection.

d. Development of an approach for integration of wavelet-based

multi-scale edges into a single level description for image

segmentation.

e. Determination of values of the space-varying regularization

parameters in the refined-regularization approach.

2. Parallel Image Processing

Computational issues which arise in the implementation of parallel image

processing algorithms, with special emphasis on multiresolution

approaches, shall be investigated. These issues include:

a. The determination and evaluation of desirable multiprocessor

architectures with special emphasis on mesh based architectures.

b. The determination and evaluation of desirable embeddings of wavelet

transform coefficients of 2-D images in the given architectures.

c. The implementation of parallel versions of the multiscale edge

integration approaches identified in A.I.

d. The general study and development of parallel image processing

algorithms for the architectures identified in A.2.a with special

emphasis on algorithms using multiresolution image representations.

3. Experimental Program

Wherever possible the algorithms developed will be implemented on

standard workstations (e.g. SUN-4) and will be evaluated with artificial and

natural images. Further, those algorithms with meaningful parallel

implementations will be implemented in simulated versions of architectures

identified in A.2.a. in order to predict time performance in parallel

realizations.
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B. RESEARCH STATUS

B.1. Wavelet Transforms in Image Processing

B.l.a. Edge Detection Using Wavelet Transforms

The application of wavelet theory to multi-scale image processing has

emerged as an exciting research problem during the past two years. The

multi-resolution analysis allows an image to be studied at different scales;

a scaled image at the resolution 2 J - 1 can be decomposed into the sum of the

approximation at the lower scale (at resolution 2A and the difference image

between the two scales which can be represented by the wavelet transform at

the jth scale. The edge Informations are contained in the successive

difference images, and the multi-scale edges can provide a detailed

description of object boundaries. Several well-known wavelet bases

functions have been explored for edge detection and image segementation

([MALL 89], [DAUB 881, [CHAN 90], [PENT 901). In particular, Mallat and

Zhong developed a spline wavelet and used wavelet maxima to characterize

multi-scale edges ([HMALL 89b], [MALL 90]). Daubechles orthonormal wavelets

with compact support are very attractive for image coding and image

processing ([DAUB 88], [ZETT 90]); when they are applied to edge detection,

the detected edge location tend to be shifted by one pixel due to the fact

that the scale function O(x) is not a symmetric function and the wavelet

function Ox) is not anti-symmetric. In order to improve the edge

localization, a wavelet was constructed on the basis of a set of values of

Daubechles basis function (N=3), and its potential in edge detection has

been experimentally explored. This is briefly discussed below.

Let us consider the one dimensional case and let 0 3 (x) and 03 (x) denote

the Daubechie scale function and wavelet function respectively for index

N=3. 03 (x) has its peak at x=1 and its support in [0, 2N-l]. Let

f3 
(x) = [03 (x + 1) + 03 (-x + 1)]

which is a symmetric function peaked at x=O and has its support in [-4, 4].

However, f 3(x) does not satisfy the 2-scale difference equation

f(x) = E c f(2x - n) for all xc[-4, 4] and ncZ
n n

thus, it cannot be used as a scale function. Instead, a symmetric scale

function 0 (x) is constructed such that

*s(x) = E Cn s(2x - n) for all xc[-4, 4]

sX k f (xk for xkCS
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where S is a set of thirteen points (-4,-3,-2,-1.5,-I,-0.5,0,

0.5,1,1.5,2,3,4). The coefficients {C } are related to the low-pass filtern

coefficients {h(n)} where h(n)=Cn/2 ; the low-pass filter function is given

by H(w)=Zh(n)c which receives a signal at a given scale and produces a
n

scaled signal at the next resolution level. A high-pass filter
- incd

G(w)=Zg(n)C_ can be chosen where
n

G~w) = -i V/1 - IH()I c- iW / 2 sgn(C)

whose output gives the wavelet transform. The filter coefficients {h(n)}

and {g(n)} are given in Table 1.1.

Table 1.1 Filter Coefficients for the Given Wavelet Transform

n h(n) g(n)

-4 0.0171184109 -0.0122422692
-3 -0.0202565862 -0.0228800973
-2 -0.0595227389 0.0261126331
-1 0.2713073859 0.0373127434
0 0.5827070568 -0.4996226426
1 0.2713073859 0.4996226426
2 -0.0595227389 -0.0373127434
3 -0.0202565862 -0.0261126331
4 0.0171184109 0.0228800973
5 0 0.0122422692

The wavelet function #P(x) satisfies

q(x) = 2Z g(n) 0(2x - n)
n

Although s (x) has a compact support [-4, 41, @x), however, is not

compactly supported as shown in Fig. 1.1 (a) and (b) respectively. Note

that the right half of O(x), xc[0,4], is similar in shape to Daubechies

03(x) for xc[1,5], O(x) is very different from Daubechies 0 3 (x). Because of

the anti-symmetry of @(x) with respect to x=1/2, it may provide better

capability for edge detection and localization.
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Figure 1.1 The constructed scale function Ox) and wavelet function O(x).

6



For two dimensional images, one can apply the one dimensional wavelet

transform analysis first row-wise and then column-wise giving three

subimages which contain directional edge Informations between two

consecutive scales; they may be merged into a single image by taking the

maximum value at each pixel. Fig. 1.2 illustrates an experimental result on

a girl's image (Lenna image), where the wavelet transforms (before taking

wavelet maxima) at levels 1, 2, and 3 are shown together with the original

image. As compared to Mallat and Zhong's wavelet transform, the magnitude

of our wavelet transform at level i appears to be weaker but the relatively

refined edge information was observed in level 3 which may facilitate the

integration of multi-scale edges. More experimental work is in progress.

The details will be described in our technical report TR-SP-91-06 which will

be submitted in July 1991.

During the second year of the project period, studies on wavelet

transforms for accurate localization will be continued. Barlaud's recent

algorithm [BARL 911 will be taken into consideration. The connection

between wavelet-based edge detection and the regularization-based multiscale

edge detection will be studied as mentioned in the next section.

Characteristic behaviors of edges [LUJA 89] [TAGA 90] in wavelet transforms

will be examined. The performances of our developed algorithms will be

evaluated and compared.

B.i.b. Signal Characterization by Split Dyadic Wavelet Transform

An extension of the dyadic wavelet transform, termed the split dyadic

wavelet transform (SDWT), has been developed. It decomposes the dyadic

wavelet transform at each scale into K Information channels, where each

channel is designed to characterize a specific feature in a digital signal

f(n). The information channels may be constructed by using either linear or

nonlinear operators T 's on the dyadic wavelet transform W f(n) and on the

scaled signal S2 f(n), where k denotes the kth channel. A condition is

7
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Figure 1.2 The experimental result of applying the developed wavelet
transform to the Lenna image.
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Imposed such that the sum of the outputs of these channels is equal to the

original wavelet transform at each scale, i.e.,

K
W1 f(n) = Z T k[W f(n)]

2 k=1 k

and
K

S Jf(n) = Z T k [S f(n)]
2 ~k-1i

The SDWT has been applied to analyze some biological signals such as

respiratory signals for accessing the pulmonary functions, where the

respiratory tidal volume is digitally recorded with sampling rate of 64 Hz.

The signal shows up-going trends correspond to inhaling and down-going

trends correspond to exhaling. The fluctuations superimposed on the

up-going and down-going trends carry important information about the

physiological structure of breathing channels. A Gaussian wavelet was used;

the nonlinear operator T (associated with channel 1) is given by
1

SW2f(n), if W2 f(n) > 0T14W f(n)1 ={2'

2 0, otherwise

T2 (associated with channel 2) is the complement of T The results of the

five-scale wavelet analysis showed its potential application to estimate the

air flow into and out of the lung, providing a new characterization and

visualization of the signal. This work is described in our technical report

TR-SP-91-03.

B.2. Edge Detection Using Regularization Theory

B.2.a. Edge Detection Using Refined Regularization

An edge detection algorithm based on regularization with space-varying

parameters has been developed where the smoothness is controlled spatially

over the image space. The assumption of the smoothness constraint in the

global sense using a fixed regularization parameter is one of the major

problems of the algorithms based on regularization theory. Several

nonstandard algorithms have been developed to overcome these problems by

using line process, but they suffer from the extensive computation required

in minimizing the resulting nonconvex functionals. In this algorithm, the

values of parameters in the model are adaptively determined by an iterative

refinement process, hence the image dependent parameters such as the optimum

value of the regularization parameter or the filter size are eliminated.
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The algorithm starts with an oversmoothed regularized solution and

iteratively refines the surface around discontinuites by using the structure

around the discontinuities as exhibited in the error signal. The spatial

control of smoothness is shown to resolve the conflict between detection and

localization criteria of edge detection. The computational aspects of the

algorithm as well as its performance on real and synthetic images were

studied. This work is described in our technical report TR-SP-91-02 and has

been presented to the 1991 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition.

B.2.b. Multiscale Edge Detection Using First Order R-Filter

A multiscale edge detection scheme using the regularization filter

(R-filter) has been studied. The derivative of the first order R-filter

obtained from the i-D string functional favors the localization performance

at the expense of relatively degraded detection performance. In order to

improve the detection performance, edges at the different scales are

combined by a simple integration scheme which is due in part to the improved

localization performance of the R-filter at each stage. This operator

minimizes the shift of edges in scale space, and simplifies the integration

of the corresponding edges at successive scales. The properties of the

filter as well as its relation with other edge operators have been examined.

The combined edges from this multiscale representation have been evaluated

by using both quantitative and qualitative measures for artificial and

natural Images. A brief summary of this work is given below. The details

are described in our technical report TR-SP-91-04.

Multiscale Edge Operator

A multiscale representation may be obtained by carrying out the

smoothing process using the regularization; each level of resolution is

obtained by minimizing the string functional

E (f, A) (f - d)2 dx + A f f 2dx

where d is the image data and f Is the regularized solution. The scale

parameter in this case is the regularization parameter A so that the coarse

levels of representation are obtained by minimizing the string functional

with a large A, while fine levels are obtained by using a small A. Sweeping

the parameter A continuously generates the scale space representation.

Let V={vl,v 2 ..... vn} be the set of Images obtained by applying a

smoothing operation to the image data with different degree of smoothing,

and W = {wI, w2 .... w } be the set of images containing the gradient
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information at each scale. For the Gaussian case, the set W can be

constructed by convolving the signal with the gradient of the Gaussian

operator, g(x; (r). The set containing multiscale edges, E={ele 2 ... ,e n},

can be obtained by registering the maxima in w1 , since a high gradient value

indicates a sharp change at that point. Alternatively, the sets V and W can

be constructed using regularization. In this case, given a set of

regularization parameters, L = (A1  A2 , ... A } with A 1<A2 <... <A n the1 ' n "" n

set V is constructed by V = {VAl vA 2' ...' vn } n where

V~i = v(x; A ) = {v(x) E(v) =f Inf f, [f - d2 + A 2 ]dx).

AIfEV~ d) + -)x}

which is the function that minimizes the string functional with the
2regularization parameter A The set W is constructed from the gradient of

the function vA. The Euler-Lagrange equation associated, with the string

functional is

a~f
f - d - A -= 0ax 2

with the boundary conditions
af 1 0

5-x• -a,b
The solution satisfying the boundary conditions is given by [BLAK 871

f(x) = b G(x, x') d(x') dx'
-a

where G(x,x') is the Green's function. For a bi-infinite domain (a, b -4),

G(x, x') = 1 e-lx-x'j/A

and thus the solution can be written as

fCx) _-ex-x' /A d(x'.) dx'

which is the convolution of the data d with a filter whose impulse response

is

hr (x; A) = 1 e-xI/A

where A controls the effective size of the filter so that a small A causes a

11



small degree of smoothing. Thus a multiscale representation

V={v AIVA2'...' VAn } can be constructed by computing vAi as

VA d h (x; A
r

where h r(x; A ) is the first order regularization filter. The set W can be

constructed by convolving the signal with the derivative of h r(x; A )

d

Wi = d (d h (x, A ))=d g(X, A)
d-x r ' I r ' 1

where

gC(x; A) = d hrx, A -1 x xxO/A x*O

dx r 2A lxi

which has a discontinuity at x=O.

It was shown that derivative of Gaussian is an optimal linear edge

operator in terms of maximizing both good detection and good localization

performance. This filter is localized both in spatial and frequency domains

so that the ringing artifacts due to Gibbs phenemena are also minimized.

Furthermore, Torre and Poggio [TORR 86] showed that minimizing the energy

functional associated with a rod,

2 -2
E p(f, A) = .f (f - d) dx + A fC f2 dx

is equivalent to convolving the data d with the cubic spline convolution

filter named the second order R-filter which is very similar to Gaussian.

Thus the filter h associated with minimizing the first derivative inr

E (x,A) rather than the second derivative in E (x,A) imposes a lower degreem p

of smoothness as compared to the Gaussian. Indeed this filter favors the

localization performance at the expense of degrading detection performance.

In our study, the good localization performance of this filter is combined

with the good detection performance attainable through utilizing the

multiscale behavior of edges in multiscale representation.

Properties of the R-Filter and Its Relation with Other Edge Operators

A common approach in designing edge operators is to mathematically

formulate the three edge detection criteria: good detection, good

localization, and only one response to a single edge, and then to find a

filter response which maximize them. Canny [CANN 86] forrilated these three

criteria as the signal-to-noise (SNR) ratio at the filter's output, the

reciprocal of the root-mean squared distance of the marked edge from the

12



center of the true edge and the distance between adjacent maxima in the

noise response of g respectively. These criteria are combined by maximizing

the product of the first two criteria under the constraint of the third

criterion. Canny approximated the solution of this constrained optimization

problem by the first derivative of a Gaussian,

_x2 / ,2-x2/2o 2

g(x) = - k x e

As mentioned before, Torre and Poggio [TORR 86] followed a simple way,

through minimization of the energy functional of a rod, to justify the use

of the Gaussian-like operator as a smoothing operator prior to the

differentiation. A similar filter was derived by Deriche [DERI 87][DERI 90]

by extending the Canny's filter to the range [-co, oo]. This modification

leads to an approximate solution

g(x) = k x e xl

which can be recursively implemented and performs better than Canny's

operator. Shen and Casten [SHEN 86] deduced a smoothing operator prior to

differentiation by minimizing a combined criterion,

C = VENE /E SN N S
x

where EN is the noise energy at the output of smoothing filter, EN  is the
x

noise energy of the first derivative of the filter output and ES is the

first derivative of the response to the step edge. The filter response

which maximizes this combined criterion is given as

h(x) = k e-pIxI with p>O.

This is the same as the regularization filter h (x; A) obtained fromr

minimizing the string functional. This similarity can be justified because

the criterion C imposes a high SNR for the first derivative of the filter's

output, so does minimizing the string functional. Since the first

derivative of this exponential filter is another exponential filter, it also

satisfies the Canny's localization criterion. Shen and Casten used the

zero crossing at the Laplacian of the image, which is approximated by taking

difference between the Input and output of this filter. Note that the third

criterion for edge detection, one response to one edge, is not Imposed in

obtaining the Shen and Casten's filter or the first order R-filter. This

results in a filter which is ]ess regular as compared to Canny's and

Deriche's optimal filters or the second order R-filter associated with a rod

functional.
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Gokmen [GOKM 90b] used another edge operator based on the R-filter

h (x; A); th!s operator is based upon the zero crossing in the Differencer

of Regularized Solutions (DORS) obtained with two different regularization

parameters A1 and A 2 The DORS filter DORS(x,A, A2 ) is given by

DORS(x; Al, A 2) = h r(x; A 1) - h r(x; A2 )

In the Gaussian case, it is well known that the Laplacian of a Gaussian can

be approximated by the difference of two Gaussians up to a constant.

However, DORS(x;A,A+6A) is not the Laplacian of h r(x;A); indeed,

lim DORS(x;A ,A+6;A) = lrm (h (x; A) - h (x; A + .A))r r6;00O 6A-)O

63A a h (x; A) ; k (l - lI e1xI/A
8A r 1 A

Let a new filter h(x;A) be constructed,

h(x; A) = k2 (1 + 1xI ) e-lXl/A

such that its gradient is

a k2 -Ixl/A
_._ h (x; A) = 2 x e
8x 2A

and its Laplacian is the limit of DORS(x;A,A+6A). The gradient of the

filter h(x;A) is the same as the Deriche's optimal filter up to a constant.

As indicated before, Deriche's filter is similar to the first derivative of

a Gaussian and the R-filter obtained by minimizing a rod functional. This

implies that even though the R-filter h r(x;A) has low regularity, a higher

degree of regularity can be achieved by using the difference of two such

filters with different scale parameters as utilized in reference [GOKM 90b].

Because of this important property, one can efficiently achieve a higher

degree of regularity from less regular but computationally more efficient

solutions.

Experimental Results

When an image is scanned line by line, its i-D profiles can be

decomposed into different frequency channels using the R-filter h (x;A). In

our experiments, four dyadic scale parameter values were used, A

(1=1,2,3,4). The linear size of the filter was chosen as 8A which possesses

98.2% of the entire area under the function hr (x,A). Fig. 2.1(a) shows a

noisy profile extracted from an image with SNR=7 db. The lower four signals

show the multiscale representation vi, v2, v3 and v4. A coarser description

14



is obtained as the value of the scale parameter increases. Fig. 2.1(b)

shows the noisy data at top followed by gradient signals at different scales

constructing the set W; w1 , w2, w3 and w4. The edge signals at different

scales, called the E set, are obtained by keeping only the maxima in the W

set, and they are shown in Fig. 2.1(c). As expected, noisy edges gradually

disappear at coarse scales while the locations of the remaining edges are as

accurate as those in the fine scales. Because of this spatial coincidence

of edges at different scales, these multiscale edges can be combined by a

simple integration scheme. To explore the localization and detection

performances, the one dimensional filter gr(x; A I ) was applied to rows and

columns of an image. The result showed that this edge operator can extract

the accurate edge locations even if the nearby edges may interact and can

also extract sharp corners without smoothing them.

The edges obtained in different scales can be integrated by using the

following scheme. From the edges detected at all scales, the following edge

pixels are to be erased: those isolated in all scales, those isolated in

coarse scales but disappeared in a fine scale, and those presented only in a

single scale and isolated. This rule allows us to partially eliminate those

isolated edges which are not connected to any other edge point but appear

only in the fine scale. The experimental result on applying this algorithm

to a girl's image (Lenna image) is shown in Fig. 2.2. The edges detected at

different scales are shown in Fig. 2.2(a) and the combined edges as well as

original image are shown in Fig. 2.2(b). Some of the details and textures

disappearing in coarse scales were captured by the Integration scheme.

The work planned for the second year is to explore the possible

combination of the first and second order R-filters for accurate edge

detection, and to study the relationship between regularization theory and

wavelet theory. A wavelet representation of an image will be constructed

using recursive H and G filters related to hr and gr (or ! and g) used in

this regularization based algorithm.
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Figure 2.1 The profile from a checkerboard image with SNR=7dB: (a) The

set V with, from top to bottom: original signal d, v1, v2 P v3 and v4

(b) The set W with, from top to bottom: d, w1 , w2, w3 and w4;

(c) The set E with, from top to bottom: d, e1, e2, e3 and e4.

16



/1 17



B.3. Parallel Image Processing

In the first year of the project a set of endeavors has been undertaken

to develop a deeper appreciation of the application of parallel processing

approaches to image processing. In particular the potential for wavelet

transform applications has spurred interest in embedding of wavelet

transformed images into 2-D mesh architectures and in the closely related

problem of embedding pyramid architectures into meshes in order to

efficiently perform multiresolution processing. Different embeddings of the

wavelet transform coefficients into 2-D meshes have been considered and the

time performances of these embeddings have been evaluated for typical

algorithms central to wavelet transform applications. The application of

reconfigurable meshes for pyramid emulation has been considered and a range

of potential computational models has been identified. In order to fully

utilize the potential of these various mesh computing models image

processing algorithms is under study to enable their fully parallel

application in the given target architecture and where possible to identify

fundamental limits of parallel algorithms, e.g. required support size or

communication demands. The identification of fully (or near fully) parallel

multiresolution approaches has been identified as a key goal for the second

year of the project. Finally, several novel graph compounds have been

studied which can be utilized to enhance communication bandwidth in mesh

architectures and may offer some promise in image processing. In the

following some further detail is given regarding these endeavors and their

rationale.

B.3.a. Parallel Computations for Wavelet Transforms

Multiresolution image processing is typically a natural fit to pyramid

computing architectures. [AHUJ 84], [BURT 83], [TANI 83] Wavelet forms of

image representation for n by n images can place a multiresolution

representation into an n by n mesh architecture with one coefficient per

processing element (PE) [MALL 89a]. Examples of such mesh architectures are

available (DUFF 861, [KITT 85], IFOUN 90] and are likely to be more readily

available than pyramid architectures in the future. Thus, n by n mesh

architectures might be desirable targets for wavelet based algorithm

development. A key issue in utilizing such mesh architectures is the

determination of where in the mesh the wavelet transform coefficients are

stored. Different "embeddings" of the wavelet transform coefficients in the

mesh have been considered and their performances on basic transform
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algorithms have been evalutated. Some typical results are illustrated

below.

In this presentation 2 embeddings are considered as illustrated In

Figure 3.1. In the following the original image is thought of as level 0

and successive levels, I = 1, 2, ..... refer to the successively lower

resolution image representations characteristic of the wavelet transform.

In the embedding illustrated in Figure 3.1(a) (following (MALL 89a]) the
1 2 3detail images Di , D and D at level I of the multiscale transform and the

lower resolution version of the image, A, are concentrated into subblocks

within the mesh. This embedding is denoted Block-Concentrated (BC). A

second embedding has been developed, denoted Distributed (Dist), and is

illustrated in Figure 3.1(b) where the individual components of A, a, and
1 2 3the individual components of the detail images at level 1, di , d and d'

are distributed over the mesh. Specific detail image components at level i

(i>0) corresponding to the same base image location are mapped to PE's in

the mesh which are 2 distance apart for the Dist case and 2n - i + l distance

apart for the 13C case. Thus, BC has higher communication cost at lower

levels and lower communication cost at higher levels while the opposite

holds for Dist.

A D d d I a di d d3... DI  
l 2

D 2 D 3 d d 3 d' d3 d 2  d 3 d 2 d31_3 d 2 d 1 d3 dl d d I 1

DD 2_____ 2_ 2_ _
22

2 2 3 2 d 2 d3

a 13d d d2  
1 dd

D 2 ~~ . . . . . .. .

d 2 -d 3 d d2  d3

d2 d3d d 1 2

D D 11 1 1 1

d1 [d3 d d d' d' dl d' d

d
2 22 1 2 1

d d d d d d3 d2  d3

. ... d d1  d1  1  d

(a) (b)

Figure 3.1 Wavelet transform embeddings In a 2-D mesh architecture: (a)
Block-Concentrated embedding (BC); (b) Distributed (Dist) embedding.
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Time performance results are reported here for algorithms which

decompose a given Image into its wavelet transform and reconstruct the

original image from its wavelet transform. The decomposition process

requires a set of linear convolutions along rows and columns of the mesh

with special data movements to place the results in the desired locations.

The reconstruction process requires the Insertion of rows and columns of

zeros in the mesh, row and column linear convolutions, and data movements to

restore image components to their original locations. The mesh model used

in this analysis Includes 4-neighbors connections and "wrap-around"

connections for rows and columns. (This form of 2-D mesh Interconnection is

sometimes referred to as a torus) The convolution algorithm used in this

analysis follows [RANK 90]. Only the communication steps (e.g. movements of

data from PE to neighboring PE) are evaluated in this analysis since both

embeddings require the same number of computation steps. (e.g. adds and

multiplies within a given PE) The number of communication steps required

for each algorithm over each embedding have been evalutated In closed form.

Some typical results are illustrated In Tables 3.1 and 3.2 for a filter size

of 8. In each table the results are normalized by expressing number of

communication steps as a multiple of the linear dimension of the image, n.

In Table 3.1 the wavelet transforms are computed to a level where the lowest

resolution Image is the size of the filter, i.e. 8 for these results. In

Table 3.2 the transforms are performed only to 3 levels of resolution for

each image space size. In the former case more processing at higher levels

of the multiresolution structure is required than in the latter case. In

multiresolution processing where lower numbers of levels of resolution are

used the Table 3.2 data is more representative and where larger numbers of

levels of resolution are rejuired the Table 3.1 data is more representative.
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Table 3.1 Communication Steps Required by Wavelet Decomposition/
Reconstruction Algorithms Taken to/on 8x8 Lowest Resolution Images
(Filter size is 8)

Decomposition Reconstruction
Image Size
n x n BC Dist BC Dist

1024 x 1024 8.4 n 9.2 n 4.4 n 14.1 n

512 x 512 8.7 n 9.3 n 4.7 n 14.3 n

256 x 256 9.2 n 9.6 n 5.2 n 14.5 n

128 x 128 9.9 n 9.9 n 6.0 n 14.8 n

64 x 64 11.0 n 10.4 n 7.2 n 15.1 n

Table 3.2 Communication Steps Required by Wavelet Decomposition and
Reconstruction Algorithms Working on Images of only 3 Levels of Resolution
(Filter size is 8)

Decomposition Reconstruction
Image Size
n x n BC Dist BC Dist

1024 x 1024 6.1 n .34 n 3.6 n .47 n

512 x 512 7.3 n .67 n 3.8 n .95 n

256 x 256 7.6 n 1.36 n 4.1 n 1.9 n

128 x 128 8.3 n 2.70 n 4.8 n 3.8 n

61 x 64 9.6 n 5.40 n 6.1 n 7.6 n

In Table 3.1 data, where higher level processing is required, Dist typically

requires greater communication overhead than BC. These observations are

largely reversed for the Table 3.2 data where the processing is restricted

to a fixed number of levels. Thus, where one can avoid building a

multiresolution representation with a large number of levels the Dist

embedding appears to offer some promise as a time efficient wavelet

embedding for mesh architectures. This investigation is on-going with the

consideration of other embeddings, e.g. [STOU 88], and a greater variety of

parallel vision algorithms. This work contributes to research objective

A.2.b.
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B.3.b. Reconfigurable Mesh Architectures for Multiresolution Processing

Although the embedding of a problem in the mesh can be fine-tuned to

enhance performance, multiresolution processing presents fundamental

tradeoffs in the mesh: In BC type embeddings good time performance within

levels tends to produce poor time performance across levels or for

distributed type embeddings one cannot get both good performance in the base

and at high levels. Of course, a fully realized pyramid architecture can

eliminate this problem, but the mesh has a more desirable VLSI layout.

Reconfigurable mesh architectures [LIST 91] suitable for use in image

processing are currently in development and offer very desirable

characteristics for multiresolution processing. The PAPIA2 architecture

[CANT 88], [ALBA 911 is essentially an 8-connected mesh with the capability

of bypassing PE's in the mesh to enable direct connections with distant

PE's. Figure 3.2 illustrates an embedding of a 6 level pyramid in a PAPIA2

style mesh of size 32x32. Each mesh PE emulates 1 pyramid base PE and at

most 1 pyramid PE above the base. PE's labeled + emulate only the base

whereas PE's labeled i emulate a pyramid PE in level i. PAPIA2

reconfigurability allows PE's emulating each level above the base to

communicate directly with their 4-neighbors without contention. Thus, it is

theoretically possible to have levels above the base operating in parallel.

Through such reconfigurations the fundamental tradeoffs in pyramid embedding

in the mesh, mentioned in the previous section, are alleviated as all

neighbors in a pyramid can be configured to be neighbors in this mesh,

albiet not simultaneously.

The polymorphic torus, developed at IBM, [MARE 91] is a somewhat more

powerful reconfigurable mesh and motivates the following model for the

primary mesh architecture to be utilized in algorithm development in the

second year of the project. Figure 3.3 illustrates a 4x4 piece of this

model where each position of the mesh is occupied by a PE and a Switch.

Each PE Is 4-connected to other PE's with a traditional mesh interconnection

and its associated switch handles interaction with separate row and column

busses. Figure 3.4 illustrates some of the possible configurations of the

switches. By allowing for up to 4 independent connections between PE's and

associated switches, the PE's can utilize the row and column busses to form

4 direct connections with PE's along the same row and column. Using the

same embedding of the pyramid into the mesh as illustrated in Figure 3.2,
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Figure 3.2 Embedding of a 6-level pyramid in a 32x32 mesh. Symbols +

represent mesh FE's realizing only a pyramid base PE and integers i

represent FE's realizing a base FE and level i FE in the pyramid.

each pyramid level above the base is able to function independently with

direct connections to 4-neighbors within each pyramid level provided by

segments of the row and column busses. Furthermore, by emulating 2 image

pixels within Every other "+" FE and by providing bypass capability, within

FE's, of the FE mesh connections, the base of the pyramid can be emulated in

parallel with all levels above. In this model a certain degree of FE

autonomy [FOUl 90] will be assumed whereby FE's in different levels can

perform different instructions in parallel. Also, a global "wired or" bus

is assumed to be available. Variations on this model for a reconfigurable

mesh will be used in studies of parallel algorio h development in the second

year of the project. The potential of 3-D meshes, with and without
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reconfigurability, will also be investigated. This work contributes to

research objective A.2.a.

Figure 3.3 A 4A4 piece of a reconfigurable mesh model. Circles represent
PE's and squares represent switches.

(a) (b) (c)

Figure 3.4 Typical switch settings for the reconfigurable mesh model. In
(a) the PE Is disconnected from row and column busses; In (b) the PE Is
able to communicate on row and column busses independently; and In Cc) the
row and column busses are opened and the PE communicates along each bus
segment Independently.

24



B.3.c. Fully Parallel Algorithms

It is a fundamental goal in the application of parallel computing to

make algorithms as fully parallel as possible in order to utilize the

potential of a large number of processors. To achieve this one must develop

a deep understanding of the communication demands and fundamental nature

(e.g. required support sizes, potential for fully parallel operation with

limited supports, etc.) of the particular algorithms under study. In

typical applications of pyramid or multiresolution algorithms serial

application of processing within individual levels is used with results from

one level used to affect processing in succeeding levels. Thus, many

processors in the pyramid are idle at any one time. Given the kind of

pyramid emulation model envisioned in the previous section it is desirable

to devP1op pyramid algorithms which can opcrate fully in parallel making

simultaneous use of all or a large number of levels. Multiresolution

approaches will be considered for a variety of problems including

wavelet-based boundary identification, skeletonization in binary and gray

level images, connected component labeling for binary images and graphs,

matrix multiplication, template matching, Generalized Hough approaches for

object recognition, etc. This investigation will be a main theme of the

project in the second year and will contribute to research objectives A.2.c,

A.2.d, and A.3.

Fundamental limitations on fully parallel applications of certain

connectivity preserving "reduction-only" operators, with applications in 2-D

thinning, have been studied in the past year. [Hall 91] (See [GOKM 90a]

and PRES 84] for definitions and examples of reduction and augmentation

operators) The size and strict limitations on the locations of optimally

small supports for 2-D thinning operators have been identified which allows

the algorithm designer to focus on a relatively small set of possible

optimally small support "shapes". Similar investigations are on-going in

studies of reduction-only parallel processes in 3-D image spaces and in

reduction/augmentation processes in 2-D and 3-D spaces. The design of

multiresolution transformations which preserve all or part of jie

connectivity properties of the original image are currently under

investigation with the hope of developing fully parallel multiresolution

connectivity preserving reduction and/or reduction/augmentation operators.

Such operators will help to form fundamental building blocks in fully

parallel multiresolution processing. This work should also produce results
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or tests useful for verifying connectivity preservation for multiresolution

algorithms. This work contributes to research objective A.2.d.

B.3.d. Compound Graph Networks for Enhancing Mesh Communication

Although the pyramid emulations discussed t arller are a very promising

cost-effective approach, pyramids have fundamental limitations when

processing demands are strongly global [Stou 86] as for sorting or many

Hough transform applications. In these cases the pyramid connectivity (and

that for the associated reconfigurable meshes emulating the pyramid) is

inadequate slowing performance to that comparable to a mesh alone. Thus, in

applications where better time performance is needed on strongly global

tasks, networks with higher connectivity are desirable. The well-known

binary hypercube is a powerful highly connected network useful for stongly

global computations, but is relatively expensive to build in large

instances. Ck-rtaln forms of graph compounds have been identified which can

produce performance approaching the hypercube but with substantially reduced

hardware cost. (or network degree) HAMD 90), [HAMD 91a), [HAMD 91b]

These graph compounds can be used to augment communication capability in a

mesh to help achieve higher performance.

The RGC network proposed in [HAMD 91b] is a constant degree network

which is envisioned as an augmentation of a traditional 2-D mesh

architecture. The RGC is formed by compounding a given number of atom

graphs with a complete interconnection and this compounding is done for any

desired number of levels. An example Is illustrated in Figure 3.5 where the

atom graph is a binary hypercube. (referred to as an RGC-CUBE) Table 3.3

illustrates the comparative asymptotic performance on various basic image

processing algorithms (operating on an nxn image of size N=n 2 pixels) for

two instances of an RGC-CUBE as compared to the 2-D mesh, pyramid, Mesh of

Trees (MOT) [NATH 83] and Mesh with global mesh (MGM) [CARL 88], [PRAS 89].

These results are not bad and RGC-CUBE appears to offer some potential in

Image processing, but most of the algorithms studied do not fully utilize

the full interconnection capability of the RGC-CUBE. Research is on-going

to more fully exploit this useful network and particular emphasis is being

given to the RGC-TREE Instance where the atom graph is a binary tree. In

this instance the RGC-TREE appears to be somewhat more powerful than MOT but

with substantially fewer PE's. This RGC Instance appears to offer

particularly good potential for multiresolution processing. This work

contributes to research objectives A.2.a. and A.2.d.
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f,. ~,-CUBE

Figure 3. 5 A 64-node example of a 2-RGC-CUBE. Shaded nodes (PE's) are
available for expansion to higher level netw--'

Table 3. 3 Asymptotic Time Cot -lexities for Several Architectures for a
Variety of Fundamental Image Processing Algorithms
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The RCC class of Interconnection networks is another form of complete

graph compound, but with substantially greater bandwidth and node degree

which grows with network size. [HAMD 901 The RCC-CUBE Instance in this

class is able to efficiently emulate binary hypercube and achieves time

performance very close to hypercube on a variety of strongly global

algorithms, i.e. sorting and PRAM emulation, while maintaining a

substantially lower degree and hardware cost. The RCC-FULL instance [HAMD

91b] is able to outperform binary hypercube by performing sorting and PRAM

emulation in O(logN) time while still maintaining a reduced node degree as

compared to hypercube. These high connectivity networks appear to be

promising cost-effective alternatives to binary hypercube when strongly

global problems must be solved. The application of these networks for

supporting a variety of Generalized Hough transform approaches is currently

under study. This work contributes to research objectives A.2.a. and A.2.d.
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C. RESEARCH ARTICLES

[1] "Edge Detection Using Refined Regularization," M. Gokmen and C.C. LI,

?roceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognitlon, 1991, pp. 215 221; a revised version will be

submitted to IEEI Trans. on Pattern Analysis and Machine Intelligence.
(Our Electrical Engineering Department, Technical Report, TR-SP-91-02,
April 1991).

[21 "The Split Dyadic Wavelet Transform for Signal Analysis," M. Sun, C.C.
Li and R.J. Scalabassi, submitted to IEEE Trans. on Signal Processing.

(Our Electrical Engineering Department, Technical Report, TR-SP-91-03,

May 1991).

[3] "Multiscale Edge Detection Using First Order R-Filter," M. Gokmen and
C.C. Li, will be submitted to IEEE Trans. on Pattern Analysis and
Machine Intelligence. (Our Electrical Engineering Department, Technical

Report, TR-SP-91-04).

[4] "Optimally Small Operator Supports for Fully Parallel Thinning
Algorithms," R.W. Hall, submitted to IEEE Trans. PAMI, 1991. Also
available as technical report TR-SP-91-OI, Department of Electrical
Engineering, University of Pittsburgh.

[5] "Recursively Generated Complete Graph Compounds: Efficient Networks
for Parallel Computations," M. Hamdi and R.W. Hall, submitted to IEEE
Trans. Computers, 1990 (revised May 1991). Also available as technical

report TR-CE-90-02, Department of Electrical Engineering, University of

Pittsburgh.

[6] "RCC-FULL: An Effective Network for Parallel Computations," M. Hamdi

and R.W. Hall, submitted to J. of Parallel and Distributed Computing,
1991. Also available as technical report TR-CE-91-03, Department of

Electrical Engineering, University of Pittsburgh.

[7] "Parallel Image Computations on Meshes Augmented with Compound Graphs,"
M. Hamdi and R.W. Hall, in preparation.

[8] "Embedding Wavelet Transforms in Parallel Architectures," M. Hamdi and

R.W. Hall, in preparation.
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E. INTERACTIONS

Professor LI attended the NSF/CBMS Conference on Wavelets held at

University of Lowell, Lowell, MA, June 11-15, 1990, and also the AFIT/AFOSR

Symposium on Applications of Wavelets to Signal Processing, held at AFIT,

Wright-Patterson Air Force Base, OH, March 20-22, 1991. Both Professor Li

and Professor Hall attended the DARPA Image Understanding Workshop,

Pittsburgh, PA, September 11-13, 1990.

Professor Li, Professor Hall and Dr. Gokmen attended the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Maui, HI, June

4-6, 1991. A paper entitled "Edge Detection Using Refined Regularization"

was presented at the conference.

Our research group has been in interaction with Professors K.S. Lau,

C.J. Lennard and J.J. Manfredi of our Mathematics Department. They conducted

a series of seminars on wavelet theory during the Fall and Spring Terms,

1990-91.
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